82 research outputs found

    Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana

    Get PDF
    Terrestrial productivity in semi-arid woodlands is strongly susceptible to changes in precipitation, and semi-arid woodlands constitute an important element of the global water and carbon cycles. Here, we use the Carbon Cycle Data Assimilation System (CCDAS) to investigate the key parameters controlling ecological and hydrological activities for a semi-arid savanna woodland site in Maun, Botswana. Twenty-four eco-hydrological process parameters of a terrestrial ecosystem model are optimized against two data streams separately and simultaneously: daily averaged latent heat flux (LHF) derived from eddy covariance measurements, and decadal fraction of absorbed photosynthetically active radiation (FAPAR) derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Assimilation of both data streams LHF and FAPAR for the years 2000 and 2001 leads to improved agreement between measured and simulated quantities not only for LHF and FAPAR, but also for photosynthetic CO2 uptake. The mean uncertainty reduction (relative to the prior) over all parameters is 14.9% for the simultaneous assimilation of LHF and FAPAR, 8.5% for assimilating LHF only, and 6.1% for assimilating FAPAR only. The set of parameters with the highest uncertainty reduction is similar between assimilating only FAPAR or only LHF. The highest uncertainty reduction for all three cases is found for a parameter quantifying maximum plant-available soil moisture. This indicates that not only LHF but also satellite-derived FAPAR data can be used to constrain and indirectly observe hydrological quantities.JRC.H.7-Climate Risk Managemen

    MODIS VCF should not be used to detect discontinuities in tree cover due to binning bias. A comment on Hanan et al. (2014) and Staver and Hansen (2015)

    Get PDF
    In their recent paper, Staver and Hansen (Global Ecology and Biogeography, 2015, 24, 985-987) refute the case made by Hanan et al. (Global Ecology and Biogeography, 2014, 23, 259–263) that the use of classification and regression trees (CARTs) to predict tree cover from remotely sensed imagery (MODIS VCF) inherently introduces biases, thus making the resulting tree cover unsuitable for showing alternative stable states through tree cover frequency distribution analyses. We here provide a new and equally fundamental argument why the published frequency distributions should not be used for such purposes. We show that the practice of pre-average binning of tree cover values used to derive cover values to train the CART model will also introduce errors in the frequency distributions of the final product. We demonstrate that the frequency minima found at tree covers 8 % to 18 %; 33 % to 45 %; and 55 % to 75 % can be attributed to numerical biases introduced when training samples are derived from landscapes containing asymmetric tree cover distributions and/or a tree cover gradient. So it is highly likely that the CART, used to produce MODIS VCF, delivers tree cover frequency distributions that do not reflect the real world situation

    Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    Get PDF
    Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America and Africa, also, if not foremost, inside formally protected areas. Here, we significantly extend the baseline of tropical dry forest loss inside a protected area in Ghana using a generalizable change detection technique. The forest cover change detection is based on the normalized difference vegetation index (NDVI) derived from historical Landsat data (1984–2015). Field measurements were carried out in dry semi-deciduous forest and in the adjacent savanna and woodland. Estimates of the canopy area index and above ground woody biomass were related to NDVI derived from Landsat 8 data. The change detection indicated significant NDVI decrease in a large area initially covered by tropical dry forest, associated with deforestation. The peak in deforestation was found to have occurred between 1990 and 2002, hereafter, the conservation status of the area was improved. A combination of remote sensing data corroborated by secondary data sources provides evidence for the almost complete clearance of a tropical dry forest inside a strictly protected area, attributable to logging and land clearing for arable farming. The NDVI change detection also revealed NDVI increase in the adjacent woodlands from 2002 to 2015, demonstrating woody encroachment. Historical fire data from the MODIS burned area product indicate that the deforested area experienced a high frequency of anthropogenic burning since 2004, which may have caused further degradation and largely prevents forest regeneration. The results show the ongoing destruction of tropical ecosystems even within ostensibly protected areas and ask for the revision of protection and management strategies of such areas

    Environment-sensitivity functions for gross primary productivity in light use efficiency models

    Get PDF
    The sensitivity of photosynthesis to environmental changes is essential for understanding carbon cycle responses to global climate change and for the development of modeling approaches that explains its spatial and temporal variability. We collected a large variety of published sensitivity functions of gross primary productivity (GPP) to different forcing variables to assess the response of GPP to environmental factors. These include the responses of GPP to temperature; vapor pressure deficit, some of which include the response to atmospheric CO2 concentrations; soil water availability (W); light intensity; and cloudiness. These functions were combined in a full factorial light use efficiency (LUE) model structure, leading to a collection of 5600 distinct LUE models. Each model was optimized against daily GPP and evapotranspiration fluxes from 196 FLUXNET sites and ranked across sites based on a bootstrap approach. The GPP sensitivity to each environmental factor, including CO2 fertilization, was shown to be significant, and that none of the previously published model structures performed as well as the best model selected. From daily and weekly to monthly scales, the best model's median Nash-Sutcliffe model efficiency across sites was 0.73, 0.79 and 0.82, respectively, but poorer at annual scales (0.23), emphasizing the common limitation of current models in describing the interannual variability of GPP. Although the best global model did not match the local best model at each site, the selection was robust across ecosystem types. The contribution of light saturation and cloudiness to GPP was observed across all biomes (from 23% to 43%). Temperature and W dominates GPP and LUE but responses of GPP to temperature and W are lagged in cold and arid ecosystems, respectively. The findings of this study provide a foundation towards more robust LUE-based estimates of global GPP and may provide a benchmark for other empirical GPP products.publishersversionpublishe

    The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk ÎŽ13C and sand content explaining 0.63 of the observed variability. The variation of ÎŽ13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in ÎŽ13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM. Â © Author(s) 2015

    MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) Earth observation product is widely used to estimate forest cover changes and to parameterize vegetation and Earth system models and as a reference for validation or calibration where field data are limited. However, although limited independent validations of MODIS VCF have shown that MODIS VCF's accuracy decreases when estimating tree cover in sparsely vegetated areas such as tropical savannas, no study has yet assessed the impact this may have on the VCF-based tree cover data used by many in their research. Using tropical forest and savanna inventory data collected by the Tropical Biomes in Transition (TROBIT) project, we produce a series of calibration scenarios that take into account (i) the spatial disparity between the in situ plot size and the MODIS VCF pixel and (ii) the trees' spatial distribution within in situ plots. To identify if a disparity also exists in products trained using VCF, we used a similar approach to evaluate the finer-scale Landsat Tree Canopy Cover (TCC) product. For MODIS VCF, we then applied our calibrations to areas identified as forest or savanna in the International Geosphere-Biosphere Programme (IGBP) land cover mapping product. All IGBP classes identified as “savanna” show substantial increases in cover after calibration, indicating that the most recent version of MODIS VCF consistently underestimates woody cover in tropical savannas. We also found that these biases are propagated in the finer-scale Landsat TCC. Our scenarios suggest that MODIS VCF accuracy can vary substantially, with tree cover underestimation ranging from 0 % to 29 %. Models that use MODIS VCF as their benchmark could therefore be underestimating the carbon uptake in forest–savanna areas and misrepresenting forest–savanna dynamics. Because of the limited in situ plot number, our results are designed to be used as an indicator of where the product is potentially more or less reliable. Until more in situ data are available to produce more accurate calibrations, we recommend caution when using uncalibrated MODIS VCF data in tropical savannas

    Plant–soil feedback of native and range-expanding plant species is insensitive to temperature

    Get PDF
    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently shifted their range polewards. We tested whether the magnitude of plant–soil feedback is affected by ambient temperature and whether the effect of temperature differs between these groups of plant species. Six European/Eurasian plant species that recently colonized the Netherlands (non-natives), and six related species (natives) from the Netherlands were selected. Plant–soil feedback of these species was determined by comparing performance in conspecific and heterospecific soils. In order to test the effect of temperature on these plant–soil feedback interactions, the experiments were performed at two greenhouse temperatures of 20/15°C and 25/20°C, respectively. Inoculation with unconditioned soil had the same effect on natives and non-natives. However, the effect of conspecific conditioned soil was negative compared to heterospecific soil for natives, but was positive for non-natives. In both cases, plant–soil interactions were not affected by temperature. Therefore, we conclude that the temperature component of climate change does not affect the direction, or strength of plant–soil feedback, neither for native nor for non-native plant species. However, as the non-natives have a more positive soil feedback than natives, climate warming may introduce new plant species in temperate regions that have less soil-borne control of abundance

    Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordSocietal Impact Statement Understanding of tropical forests has been revolutionized by monitoring in permanent plots. Data from global plot networks have transformed our knowledge of forests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity to climate change. Monitoring has thus far been concentrated in rain forests. Despite increasing appreciation of their threatened status, biodiversity, and importance to the global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide a protocol for permanent monitoring plots in tropical dry forests. Expanding monitoring into dry biomes is critical for overcoming the linked challenges of climate change, land use change, and the biodiversity crisis.Newton FundNatural Environment Research Council (NERC)Fundação de Amparo à Pesquisa do Estado de São PauloCYTE
    • 

    corecore